ISSN:0975-9646

Bajirao Baban Kondbhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016,1701-1704

An Analysis of Mutation Operator in Mutation
Testing

Mr. Bajirao Baban Kondbhar ', Prof. Dr. Emmanuel M

'2 Department of Information Technology
Pune Institute of Computer Technology,
SPPU University of Pune, India.

Abstract— Normal observation of Mutation testing is it costs
more in case of test design and execution. Number of mutation
operators like condition operator, arithmetic operator etc.
Every mutation operator generates equivalent mutants, and
cost to design test cases and execution of test cases are more in
case of equivalent mutant. This paper aims at to reduce
equivalent mutants and test cases related to them. In mutation
testing, mutant generation is one of the tasks before mutant
execution for killed and live mutant. In this paper, authors
have proposed an algorithm to test equivalent mutant and

reduce the work of test design for identified equivalent mutant.

The goal of the paper is to improvise the effectiveness of
mutation testing by applying quality test suite and analysing
mutation score. Sample java program and muJava mutation
system [6] is used to analyse mutation operator and mutation

score.

Keywords— Mutation Testing, Mutation Operator, Test case
generation and Execution.

I. INTRODUCTION

Mutation testing is fault based testing. Aim of the Tester is
to reveal the software defect or fault. Black box test case
design technique deals with what 1is specified.
Alternatively, it checks for functional requirements,
whether mapped with expectations i.e. comparison with
actual outcomes and expected outcomes. In white box test
case design technique internal structure of the system under
test is evaluated. Mutation testing is one of the white box
method because tester deals with code details, tester seed
defect in given program and test behaviour of the given
program whether it’s behave correctly or not? Authors have
used java program for analysis of mutation operators and
muJava mutation system. The traditional process of
mutation analysis is illustrated in Figure 1. In mutation
analysis, original code is input for testing, original program
generates versions of code by changing statement, logical,
arithmetic and conditional operator that is called mutation
operator [1]. Overall task is to generate mutant and then
design test suite which consists of number of test cases.
Execute test suite and check for killed and live mutant. If
live mutant is there then analyse equivalent mutant.
Redundancy or cyclic nature for equivalent mutant in
traditional mutation analysis is checked. Our aim is to
reduce the mentioned problem and improve upon the test
suite quality and mutation score. Mutation testing is applied
for testing a program. While other software testing
techniques applied on the correct functionality of the

www.ijcsit.com

program. The main idea is to create good test suite of test
cases rather than trying to detect the faults.

- Eiﬁ'fest
Original Cod + Create "'Fg'l-lile j
" Mutant ‘ l_.—r

xecute Test |
Analyze
Equivalent
— Mutants
% T Live M i
: Falss AN Ul e Mutant
Quit True ,-""!" . False
AKiled? ™, |
. w e -

Figure.1 Mutation Process

Good test cases are those which are having high probability
to detect uncovered defect. A good test case will detect all
the possible faults in a software program.

Il. RELATED WORK

Following are the overall steps used for mutation testing.

1. Consider original code or program C.

2. Assume mutation operator like conditional,
arithmetic, logical, relational etc. and produce the
versions of the original program i.e. mutants C’.

3. Design test case for the given mutant C’ and
original program C.

4. Analyses outcomes or results of C and C’.

5. If the results are not equivalent or equal that mutant
is killed mutant i.e. K

6. If the results are same there may be two reasons:

1. Mutants are difficult to kill. Design
another test case to kill the mutant.
il. Mutants are having same behavior i.e.

there is equivalent mutant [4]

It is necessary to achieve high mutation score on # of killed
mutants and # of non equivalent mutants. Practically value
of mutation score is 1. If MS is mutation score then 0 < =
MS = L
M. —-E

MS < =1 need to evaluate [1]. Where

1701

Bajirao Baban Kondbhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016,1701-1704

K = # of killed mutants, M is total # of mutants and E is

of equivalent mutants [2].

Lin Deng, Jeff Offutt, Nan Li [5] worked on statement
deletion operator (SDL), they observed that SDL perform
well than other mutation operator. Mutation score of SDL
mutant is 92% and 40% of equivalent mutants has been
discovered.

Pedro Reales Mateo, Macario Polo Usaola [3] implemented
Bacterio tool for mutation testing, Bacterio tool perform
better in mutant design and execution, many tasks of
mutation analysis is atomized by Bacterio tool.

In MuJava, [6] method level mutant and class level mutants
are generated, It record mutation score as well as calculate
computational time to generate and execute the mutants.
Many tools are implemented for mutation testing like
mujava, Bacterio, Jester, etc. to reduce the cost and effort
of software testing.

111.PROBLEMS IN MUTATION TESTING

Mutation testing is effective to detect faults in code or
program. Drawback is amount of human effort to measure
the correctness of originality of code i.e. human oracle
problem to analyses original code and mutant code
outcomes with each test case [1]. Another major problem of
equivalent mutants is how to minimize the effort of test case
design on equivalent mutants.

Problem of input options for test case i.e. input domain of
test cases designed for test suite. Which inputs want to
select to test case is one of the question? Every test case
wants to execute on valid and invalid inputs.

Although it is impossible to resolve these issues completely,
we can automate the mutation testing process and improve
scalability.

1V.PROPOSED ARCHITECTURE

Proposed architecture is in figure 2 includes the following
concepts regarding Mutation Analysis.

1. P is original program which is input for Mutation
Analysis.

2. By observing original program architecture generates
n-mutants by making some change in original code
i.e. apply mutation operator.

3. Module execution mutant generates execution history
of all generated Mutants.

4. If original code output and mutant code output is not
mapping i.e. the mutant is killed mutant, keep as it in
Test Suite (don’t remove corresponding Test case).

5. If original code output and mutant code output is
mapping i.e. the mutant is Equivalent mutant and
remove that Mutant from Test Suite (remove
corresponding Test case). Use proposed algorithm
and static testing aspects.

6. Execute all mutants (corresponding Test cases) in
given Test Suite, calculate Mutation Score and
computational time to execute all mutants.

7. Compare the accuracy with existing Mutation Testing
Tools like MuJava.[6]

www.ijcsit.com

[— —
I'Ems_' MODULE] I_.:.anE
MUTANT MUTANT EQUIVALENT
CREﬁﬂ.C.'N EXECUTION MUTANT
@ T l | use
|
— — proposed
[Oniginal : algarithm
| code [[m2z] [0 [T & Static
J — Testing of
code.
M _;E__T Remove
]| TCfrom
R Test sulte

Figure.2 Proposed Architecture.

V. PROPOSED ALGORITHM

Begin
Select Mutation Operator
K = Number of Mutation operator
Forn=0to K.
Generate Mutant()
Execute Mutant()
Compare original code output with Mutant code output.
If Mutant = Killed Mutant

Y Mutant assign
Calculate Mutation_Score()
Measure test suite quality ()
Else if Mutan t# Killed Mutant
Remove ()
/Mt is equivalent mutant; remove the test case related to
mutant from test suite.
Else
Add ()
/I new test case in test suite if valid and invalid inputs
detects killed mutants.
End

VI.MATHEMATICAL MODEL
Let P is original program and M is mutant generated from
original program. TS is test suite which is given by

following equation.

.................. (1)

Where -I; is number of test cases in test suite. This is given

by following equation.

T.=M ., M,,..M} ...)

MS =——— 3)

1702

Bajirao Baban Kondbhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016,1701-1704

Where K = # of killed mutants, M

and E is # of equivalent mutants. To analyse the
effectiveness of mutation score following equation is used.
MS is mutation score.

i is total # of mutants

MS = | practical value
Al Expected Re sults
4)
VII. EXPERIMENTAL SETUP

We used MuJava mutation system which is available on
website https://cs.gmu.edu/~offut/mujava/ and simulate the
given problems and de-merits of mutation testing. [6] We
used java program gdMultClass.java. Original input code
for gdMultClass is given below in figure 3.

Arithmetic and logical mutation operator are considered to
generate mutants for gdMultClass.java program; total 28
numbers of mutants are generated. In second module of
proposed architecture mutant execution is there i.e. design
test cases for given mutants and keep all test cases in test
suite or test set. In third module, analysis of equivalent
mutant is there. We applied our proposed algorithm and
compared mutant execution history with MuJava mutation
system.

Step 1: Mutant Generation.

Sample mutant generated by MuJava mutation system [6] as
per given figure 3 ie. first module in our proposed
architecture.

Input:

Original (input) code.

Processing:

Apply mutation operator (Arithmetic, Relational, Logical
and Conditional). Prepare versions of original code.

Output:

Created Mutant i.e. Mutant Code.

Muleris Conpraber Trasmms! Bhiinnls Vimns | Clrws uiants Viewer
T =T -

Sulsci s reatiud : AN peathnd -l

Origarsd

P Eagaw o -

4 pebaC O JELECIXG

&
pubic rizkc jxeatang Biring oodlled il ni

Figure 3: Mutant Generation.

www.ijcsit.com

Step 2: Mutant Execution

Sample mutant executed by MuJava mutation system [6] as
per given snapshot i.e. second module in our proposed

architecture.

TosiCaso Runner | Tradsions Mulsnts Viewer | Clans Mistants Viewar

Clans :|goMunClans

Exscate cnly chass mutanis
® Exscute caly traditional mitants

Method (AN mathod

TeurCane: |[OMusClannTant

Execute ol mutants

- N

Tima.Out |3 seconds

Trasitional Mutants Resus

5 0%
Live Wil

ACHS_11 ADIS_1 -
ADIS_12
ADIS_13
ADIS_14
ADIS_17
o1

AGIS_10
ADIS_15
ADIS 18
ADIS_3

| meis_a
ACIS_4
ADIS_5
ACIS_8
ADIS T
ACIS_U
ADIS_D
ADIU_1
ACREL_Y
ADRE_2
ACIRRL_3
ADRE_4
Loi_1
Lol
Len_a
Loi_a

Totnt: 20

Figure 4: Mutant Execution

Step 3: Design of Test-cases, analysis of
operator & Mutation Execution.

Input code:
gdMultClass.java
public class gdMultClass
{
public static String gdMult(int a,int b)
{
String result ="";
intc=a-b*b+a;
result =""+¢;
return result;
}
¥

Test-case Design:
gdMultClassTest.java
public class gdMultClassTest

public String test1()
{
String result ="";
gdMultClass obj = new gdMultClass();
result = obj.gdMult(1,2);
return result;

H
public String test2()
{
String result ="";
gdMultClass obj = new gdMultClass();
result = obj.gdMult(11,12);
return result;

H
public String test3()

Mutation

1703

Bajirao Baban Kondbhar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (4) , 2016,1701-1704

{
String result ="";
gdMultClass obj = new gdMultClass();
result = obj.gdMult(123,100);
return result;
H
h

Mutation Log:

AORB_1:10:java.lang.String_gdMult(int,int):a-b *b +a
=>(a-b*b)*a
AORB_2:10:java.lang.String_gdMult(int,int):a-b *b +a
=>(a-b*b)/a

AORB 3:10:;java.lang.String_gdMult(int,int):a-b *b + a
=>(a-b*b)%a
AORB_4:10:java.lang.String_gdMult(int,int):a-b *b +a
=>a-b*b-a

AOIU 1:10:java.lang.String_gdMult(int,int):a => -a
AOIS_1:10:java.lang.String_gdMult(int,int):a => ++a
AOIS 2:10:java.lang.String gdMult(int,int):a => --a
AOIS_3:10:java.lang.String_gdMult(int,int):a => a++
AOIS_4:10:java.lang.String_gdMult(int,int):a => a--
AOIS 5:10:java.lang.String_gdMult(int,int):b => ++b
AOIS 6:10:java.lang.String_gdMult(int,int):b => --b
AOIS 7:10:java.lang.String_gdMult(int,int):b => b++
AOIS_8:10:java.lang.String_gdMult(int,int):b => b--
AOIS 9:10:java.lang.String_gdMult(int,int):b => ++b
AOIS 10:10:java.lang.String_gdMult(int,int):b => --b
AOIS_11:10:java.lang.String_gdMult(int,int):b => b++
AOIS_12:10:java.lang.String_gdMult(int,int):b => b--
AOIS 13:10:java.lang.String gdMult(int,int):a => a++
AOIS_14:10:java.lang.String_gdMult(int,int):a => a--
AOIS_15:11:java.lang.String_gdMult(int,int):c => ++c
AOIS 16:11:java.lang.String gdMult(int,int):c => --c
AOIS 17:11:java.lang.String_gdMult(int,int):c => c++
AOIS_18:11:java.lang.String_gdMult(int,int):c => c--
LOI 1:10:java.lang.String_gdMult(int,int):a => ~a
LOI 2:10:java.lang.String_gdMult(int,int):b => ~b
LOI 3:10:java.lang.String_gdMult(int,int):b => ~b
LOI 4:10:java.lang.String_gdMult(int,int):a => ~a

LOI 5:11:java.lang.String_gdMult(int,int):c => ~c

o) Command Prompt - java mujava.quiRunTestMain

- testd = -9754
n0IS_2 - testl
H0I18_3 - testl
10154 - testl
10155 - testl
H0IS_6 - testl
HOIS_7 - testl

_9 - testl
BOIU_L - testl
AORB_L - testl
AORB_2 - testl
AORB_3 - testl = @
NORB_4 - testl = -4

LOI_1 - testl =

test 3 kill ==

www.ijcsit.com

Figure 5: Mutant Execution Result Analysis.

Figure 6: Mutation Operator Analysis.

VIIl. CONCLUSION

In this paper, proposed work has applied various
mutation operators like arithmetic, logical, conditional and
relational operator. It has been observed that arithmetic
operator is having high probability to generate equivalent
mutant than conditional, logical and relational operator.
Hence there is need to focus more on arithmetic operator.
By using proposed algorithm, in some cases of arithmetic
operator, mutation score efficiency is increased.

Future scope is to execute mutants in parallel by using
nVIDIA processors to increase the performance of
computational time.

REFERENCES

[1] Yue Jia & Mark Harman, “An analysis and survey of the Development
of Mutation Testing”, IEEE transactions on software engineering,
vol. 37, no. 5, september/october 2011

[2] Mustafa Bozkurt, Mark Harman and Youssef Hassoun “Testing
and verification in service oriented architecture: a survey” software
testing, verification and reliability Softw. Test. Verif. Reliab. (2012)
Published online in Wiley Online Library (wileyonlinelibrary.com).
DOI: 10.1002/stvr.1470

[3] Pedro Reales Mateo, Macario Polo Usaola. “Bacterio: Java Mutation
Testing Tool” 2012 28th IEEE International Conference on Software
Maintenance (ICSM)

[4] Pedro Reales Mateo, Macario Polo Usaola, and Jose Luis Fernandez
Aleman. “Validating Second-Order Mutation at System Level.”
IEEE Transactions on Software Engineering, VOL. 39, no. 4, april
2013.

[5] Lin Deng, Jeff Offutt, Nan Li” Empirical Evaluation of the Statement
Deletion Mutation Operator” IEEE International Conference on
Software Testing, Verification and Validation (ICST 2013), March
2013

[6] Mujava tool available
http://cs.gmu.edu/~offut/mujava/.

through Website:

1704

